ALGEBRA II			
Number and Quantity			
The Real Number System (N-RN)			
Extend the properties of exponents to rational exponents Major			
N-RN. 1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1 / 3}$ to be the cube root of 5 because we want $\left[5^{1 / 3}\right]^{3}=5^{(1 / 3) 3}$ to hold, so $\left[5^{1 / 3}\right]^{3}$ must equal 5.	Desired Student Performance		
	A student should know - The meaning and function of exponents. - The meaning of rational expressions.	A student should understand - Simplifying an exponential expression. - Simplifying radical expressions.	A student should be able to do - Identify and attend to structure in writing and using rational exponents. - Recognize a power's corresponding root. - Relate use of rational exponents to properties of integer exponents.

ALGEBRA II			
Number and Quantity			
The Real Number System (N-RN)			
Extend the properties of exponents to rational exponents Major			
N-RN. 2 Rewrite expressions involving radicals and rational exponents using the properties of exponents.	Desired Student Performance		
	A student should know - A single quantity can be represented by various expressions. - Facts about quantities can be expressed by different equations.	A student should understand - Simplifying a radical expression.	A student should be able to do - Rewrite radical expressions using a fractional exponent instead of a radical sign - Rewrite exponential expressions to reveal quantities of interest that may be useful.

ALGEBRA II			
Number and Quantity			
Quantities (N-Q)*			
Reason quantitatively and use units to solve problems. Supporting			
N-Q. 2 Define appropriate quantities for the purpose of descriptive modeling.*	Desired Student Performance		
	A student should know - Quantities are contextualized by the use of units.	A student should understand - Recognize and identify units. - Identify relevant quantities in any context or problem-solving task.	A student should be able to do - Describe solutions using complete quantities (including units). - Attend to precision by the consistent use of units throughout the problem solving process.

ALGEBRA II			
Number and Quantity			
The Complex Number System			
Perform arithmetic operations with complex numbers			Additional
N-CN. 1 Know there is a complex number i such that $i^{2}=-1$, and every complex number has the form $a+b i$ with a and b real.	Desired Student Performance		
	A student should know - Every quadratic equation has complex number solutions. - Complex numbers include imaginary and real numbers. - Some solutions to quadratic equations may be imaginary. - The imaginary unit i is a number, not a variable .	A student should understand - How to solve quadratic equations in the form of $x^{2}+$ $\mathrm{k}=0$, where $\mathrm{k}>0$.	A student should be able to do - Use a clear and precise vocabulary in defining of the imaginary unit. - Prove and define i as the square root of -1 .

ALGEBRA II			
Number and Quantity			
The Complex Number System			
Perform arithmetic operations with complex numbers			Additional
N-CN. 2 Use the relation $i^{2}=-1$ and the commutative, associative, and distributive properties to add, subtract, and multiply complex numbers.	Desired Student Performance		
	A student should know - Every quadratic equation has complex number solutions. - Complex numbers include imaginary and real numbers. - Some solutions to quadratic equations may be imaginary. - The imaginary unit i is a number, not a variable.	A student should understand - How to solve quadratic equations in the form of $x^{2}+$ $\mathrm{k}=0$, where $\mathrm{k}>0$.	A student should be able to do - Perform operations with complex numbers. - Use a clear and precise definition of the imaginary unit. - Define i as the square root of -1.

ALGEBRA II			
Number and Quantity			
The Complex Number System			
Use complex numbers in polynomial identities and equations			Additional
N-CN. 7 Solve quadratic equations with real coefficients that have complex solutions.	Desired Student Performance		
	A student should know - Every quadratic equation has complex number solutions. - Complex numbers include imaginary and real numbers. - Some solutions to quadratic equations may be imaginary. - The imaginary unit i is a number, not a variable.	A student should understand - How to solve quadratic equations in the form of $x^{2}+$ $\mathrm{k}=0$, where $\mathrm{k}>0$.	A student should be able to do - Perform operations with complex numbers. - Use a clear and precise definition of the imaginary unit. - Define i as the square root of -1.

ALGEBRA II			
Algebra			
Seeing Structure in Expressions (A-SSE)			
Interpret the structure of expressions Major			
$\text { A-SSE. } 2$	Desired Student Performance		
expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a difference of squares that can be factored as $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.	A student should know - Expressions can be factored into simpler expressions. - Factoring expressions is similar to factoring numbers.	A student should understand - Factoring simple expressions. - Many quadratic trinomials can be factored into the product of two binomials.	A student should be able to do - Recognize various forms of factoring. - Find common and binomial factors of quadratic expressions. - Factor special quadratic expressions.

ALGEBRA II			
Algebra			
Seeing Structure in Expressions (A-SSE)			
Write expressions in equivalent forms to solve problems Major			
A-SSE. 3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* c. Use the properties of exponents to transform expressions for exponential functions. For example the expression $1.15 t$ can be rewritten as $\left[1.15^{1 / 12}\right]^{12 t} \approx 1.012^{12 t}$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.	Desired Student Performance		
	A student should know - Exponential growth. - Exponential decay. - Growth and decay factor. - Exponential function models growth or decay of an initial quantity.	A student should understand - Creating exponential expressions. - Graphing a function (if still needed as a visual aid).	A student should be able to do - Rewrite expressions to reveal quantities that may be more useful. - Recognize that exponential function model may be appropriate when finding the solution would require iterative multiplication. - Model in the context of real world situations, such as compound interest and radioactive decay.

ALGEBRA II			
Algebra			
Seeing Structure in Expressions (A-SSE)			
Write expressions in equivalent forms to solve problems Major			
A-SSE. 4 Derive the formula for the sum of a finite geometric series (when the common ratio is not 1), and use the formula to solve problems. For example, calculate mortgage payments.*	Desired Student Performance		
	A student should know - As with arithmetic series, geometric series are also finite - A geometric series is the sum of the terms in a geometric sequence.	A student should understand - The sum of a finite number of terms can be found using the first term, number of terms, and the common ratio. - A formula can be used to find the sum of a finite geometric series.	A student should be able to do - Define geometric series and find their sums - Use the following formula to find the sum of a finite series $\mathrm{S}_{\mathrm{n}}=\mathrm{a}_{1}\left(1-\mathrm{r}^{\mathrm{n}}\right) / 1-\mathrm{r}$

ALGEBRA II			
Algebra			
Arithmetic with Polynomials and Rational Expressions (A-APR)			
Understand the relationship between zeros and factors of polynomials Major			
A-APR. 2 Know and apply the Remainder Theorem: For a polynomial $p(x)$ and a number a, the remainder on division by $x-a$ is $p(a)$, so $p(a)=0$ if and only if $(x-a)$ is a factor of $p(x)$.	Desired Student Performance		
	A student should know - Synthetic division simplifies the long division process. - Algorithms are instructions in solving problems and identify algorithms used in previous courses. - Factors of polynomials are similar to factors of whole numbers.	A student should understand - Writing the coefficients of polynomials in standard form. - Long division of whole numbers. - Factoring whole numbers and polynomials.	A student should be able to do - Know and apply the Remainder Theorem. - Divide polynomials. - Use both long division and synthetic division to divide polynomials. - Attend to precision - Recognize similar structure in both division processes. - Recognize when a specific division process may not be possible.

ALGEBRA II			
Algebra			
Arithmetic with Polynomials and Rational Expressions (A-APR)			
Understand the relationship between zeros and factors of polynomials Major			
A-APR. 3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial.	Desired Student Performance		
	A student should know - Knowing the zeros of a polynomial function can give information about its graph. - Zeros of a quadratic function are equivalent to the x-intercepts and solutions of the related quadratic equation set to zero.	A student should understand - Finding x - and y-intercepts - Solving quadratic equations by factoring and by graphing. - Zeros of a quadratic function $y=a x^{2}+b x+c$ can be found by solving the related equation $0=a x^{2}+b x+c$. - Applying the Zero-Product Property. - Applying the Factor Theorem.	A student should be able to do - Write a polynomial function from its zeros - Analyze the factored form of polynomials. - Use appropriate tools strategically to graph the function defined by the polynomial. - Represent the polynomial in a factored form, tables, and graphs.

EDUCATON

ALGEBRA II			
Algebra			
Arithmetic with Polynomials and Rational Expressions (A-APR)			
Use polynomial identities to solve problems			Additional
A-APR. 4 Prove polynomial identities and use them to describe numerical relationships. For example, the polynomial identity $\left(x^{2}+y^{2}\right)^{2}=$ $\left(x^{2}-y^{2}\right)^{2}+(2 x y)^{2}$ can be used to generate Pythagorean triples.	Desired Student Performance		
	A student should know - Number theory. - Consecutive numbers.	A student should understand - Factoring polynomials.	A student should be able to do - Use polynomial identities to write expressions in different forms. - Determine if an expression is even or odd by its characteristics. - Identify patterns

ALGEBRA II			
Algebra			
Arithmetic with Polynomials and Rational Expressions (A-APR)			
Rewrite rational expressions Supporting			
A-APR. 6 Rewrite simple rational expressions in different forms; write $a(x) / b(x)$ in the form $q(x)+r(x) / b(x)$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division, or, for the more complicated examples, a computer algebra system.	Desired Student Performance		
	A student should know - Factors of polynomials are similar to factors of whole numbers.	A student should understand - Division of whole numbers. - Long division of polynomials. - Synthetic division of polynomials.	A student should be able to do - Use appropriate tools strategically, including technology. - Attend to precision in checking the factors of the expressions. - Factor rational expressions. - Rewrite rational expressions using inspection or long division. - Determine how different forms of an expression reveal useful information.

| ALGEBRA \|| | | | |
| :---: | :---: | :---: | :---: |
| Algebra | | | |
| Creating Equations (A-CED)* | | | |
| Create equations that describe numbers or relationships Supporting | | | |
| A-CED. 1
 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.* | Desired Student Performance | | |
| | A student should know
 - Properties of Equality (Reflexive, Symmetric, Transitive, Substitution, Addition, Subtraction, Multiplication, and Division).
 - Properties of Inequality (Transitive, Addition, Subtraction, Multiplication, and Division).
 - Inverse Operations.
 - Variables represent unknown quantities.
 - Absolute value. | A student should understand
 - How to apply the Properties of Equality.
 - Isolating variables.
 - Applying the order of operations.
 - Using the equal sign to represent balance or equivalence.
 - Using signs of inequalities to represent a domain of solutions.
 - Representing operations symbolically. | A student should be able to do
 - Represent real world problems algebraically, and reason abstractly and quantitatively in solving them.
 - Find unknown quantities by relating them to known quantities. |

ALGEBRA II			
Algebra			
Reasoning with Equations and Inequalities (A-REI)			
Understand solving equations as a process of reasoning and explain the reasoning Major			
A-REI. 1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.	Desired Student Performance		
	A student should know - Properties of Equality (Reflexive, Symmetric, Transitive, Substitution, Addition, Subtraction, Multiplication, and Division). - Inverse Operations. - Variables represent unknown quantities.	A student should understand - How to apply the Properties of Equality. - Isolating variables. - Applying the order of operations. - Using the equal sign to represent balance or equivalence.	A student should be able to do - Justify their solution method - Reason abstractly and quantitatively. - Find unknown quantities by relating them to known quantities.

ALGEBRA II			
Algebra			
Reasoning with Equations and Inequalities (A-REI)			
Understand solving equations as a process of reasoning and explain the reasoning			
A-REI. 2 Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.	Desired Student Performance		
	A student should know - The function of exponents and radicals. - Properties of Equality (Reflexive, Symmetric, Transitive, Substitution, Addition, Subtraction, Multiplication, and Division). - Inverse Operations. - Variables represent unknown quantities.	A student should understand - How to apply the Properties of Equality. - Isolating variables. - Using the equal sign to represent balance or equivalence.	A student should be able to do - Solve square root and other radical equations - Justify their solution method. - Reason abstractly and quantitatively. - Find unknown quantities by relating them to known quantities. - Use mathematical properties and structures to create equivalent expressions.

| ALGEBRA \|| | | | |
| :---: | :---: | :---: | :---: |
| Algebra | | | |
| Reasoning with Equations and Inequalities (A-REI) | | | |
| Solve equations and inequalities in one variable | | | |
| A-REI. 4
 Solve quadratic equations in one variable.
 b. Solve quadratic equations by inspection (e.g., for $x^{2}=49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm b i$ for real numbers a and b. | Desired Student Performance | | |
| | A student should know
 - The function of exponents and radicals.
 - Properties of Equality (Multiplication and Division).
 - Inverse Operations.
 - Variables represent unknown quantities. | A student should understand
 - How to apply the Properties of Equality.
 - Isolating variables.
 - Using the equal sign to represent balance or equivalence. | A student should be able to do
 - Rewrite functions by completing the square.
 - Look for and express regularity in repeated reasoning and derive possible shortcuts as solving equations.
 - Use mathematical properties and structures to create equivalent expressions. |

| ALGEBRA \|| | | | |
| :---: | :---: | :---: | :---: |
| Algebra | | | |
| Reasoning with Equations and Inequalities (A-REI) | | | |
| Solve systems of equations \quad Additional | | | |
| A-REI. 6
 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables. | Desired Student Performance | | |
| | A student should know
 - Variables represent unknown quantities.
 - Properties of Equality (Reflexive, Symmetric, Transitive, Substitution, Addition, Subtraction, Multiplication, and Division).
 - Inverse Operations. | A student should understand
 - Graphing on a coordinate plane.
 - How to apply the Properties of Equality.
 - Isolating variables.
 - Using the equal sign to represent balance or equivalence. | A student should be able to do
 - Solve linear systems using graphs and tables.
 - Solve linear systems algebraically.
 - Recognize the point of intersection of the graphs as the solution of the system.
 - Identify one solution, infinitely many solutions, or no solution for the system.
 - Use appropriate tools strategically. | DEPAKTMENTO

EDUCATION

ALGEBRA II			
Algebra			
Reasoning with Equations and Inequalities (A-REI)			
Solve systems of equations			Additional
A-REI. 7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y=-3 x$ and the circle $x^{2}+y^{2}=3$.	Desired Student Performance		
	A student should know - A quadratic function is a stretch, compression, reflection and/or translation of $y=x^{2}$.	A student should understand - Solving systems of linear equations.	A student should be able to do - Solve and graph systems of linear and quadratic equations. - Identify one solution, two solutions, or no solution for the system. - Use appropriate tools strategically.

| ALGEBRA \|| | | | |
| :---: | :---: | :---: | :---: |
| Algebra | | | |
| Reasoning with Equations and Inequalities (A-REI) | | | |
| Represent and solve equations and inequalities graphically Major | | | |
| A-REI. 11
 Explain why the x coordinates of the points where the graphs of the equations $y=f(x)$ and $y=g(x)$ intersect are the solutions of the equation $f(x)=g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.* | Desired Student Performance | | |
| | A student should know
 - Variables represent unknown quantities.
 - Properties of Equality (Reflexive, Symmetric, Transitive, Substitution, Addition, Subtraction, Multiplication, and Division).
 - Inverse Operations. | A student should understand
 - Solving systems of linear equations.
 - Graphing on a coordinate plane.
 - How to apply the Properties of Equality.
 - Isolating variables.
 - Using the equal sign to represent balance or equivalence. | A student should be able to do
 - Defend their reasoning in the context of real-world problems.
 - Construct viable arguments to defend their responses.
 - Use appropriate tools strategically. |

ALGEBRA II			
Functions			
Interpreting Functions (F-IF)			
Understand the concept of a function and use function notation Supporting			
F-IF. 3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0)=f(1)=1, f(n+1)=f(n)+$ $f(n-1)$ for $n \geq 1$.	Desired Student Performance		
	A student should know - The set of integers includes the whole numbers and their opposites. - Define domain.	A student should understand - Continue or complete a given sequence by listing additional terms. - Develop a rule to yield sequence values.	A student should be able to do - Recognize sequences as functions. - Describe/model a sequence using function notation. - Recognize a recursive function as a function that calls upon itself to produce new terms within the sequence

| ALGEBRA \|| | | | |
| :---: | :---: | :---: | :---: |
| Functions | | | |
| Interpreting Functions (F-IF) | | | |
| Interpret functions that arise in applications in terms of the context Major | | | |
| F-IF. 4 | Desired Student Performance | | |
| models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries, end behavior; and periodicity.* | A student should know
 - A function can be used to model the relationship between two quantities.
 - Key features may be identified using various representations such as graphs and tables.
 - The end behavior of a graph may be used to determine the domain of the function. | A student should understand
 - Identify all intercepts.
 - Given a function, create a table of values and sketch a graph.
 - Functions with degree other than 1 may contain relative maximum or relative minimums.
 - Identify Symmetries in graphs. | A student should be able to do
 - Given key features, sketch an appropriate graph
 - Determine increasing and decreasing intervals.
 - Identify relative maximums and minimums.
 - Recognize periodicity (when applicable) in graphs.
 - Model a periodical function using the form $f(x+P)=f(x)$ where the period (P) is a non-zero constant. |

ALGEBRA II			
Functions			
Interpreting Functions (F-IF)			
Interpret functions that arise in applications in terms of the context Major			
F-IF. 6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.*	Desired Student Performance		
	A student should know - Recognize that the rate of change can be calculated at various points along any curve.	A student should understand - Calculate the average rate of change by finding the slope of a secant line of the curve.	A student should be able to do - Compare the rate of change associated with different intervals along the curve.

MISPAKTMENTOF
EDUCATION
EDUCATION

| ALGEBRA \|| | | | |
| :---: | :---: | :---: | :---: |
| Functions | | | |
| Interpreting Functions (F-IF) | | | |
| Analyze functions using different representations ${ }^{\text {a }}$ Supporting | | | |
| F-IF. 7 | Desired Student Performance | | |
| expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.*
 c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.
 e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude. | A student should know
 - A function can be used to model the relationship between two quantities.
 - The end behavior of a graph.
 - Definition and examples of polynomials.
 - Standard Form of a Polynomial Function.
 - Factoring polynomials.
 - Zero Product Property.
 - The Factor Theorem.
 - Relative maximum.
 - Relative minimum. | A student should understand
 - End behavior and turning points can be determined from the degree of the polynomial.
 - A polynomial function of odd degree has an even number of turning points.
 - A polynomial function of even degree has an odd number of turning points.
 - Setting linear factors to zero to find the zeros. | A student should be able to do
 - Determine the end behavior of polynomial function given its algebraic form.
 - Use the graph of a polynomial function to construct its algebraic form.
 - Describe the relationship between the linear factors and the zeros of a polynomial.
 - Identify relative maximums and minimums.
 - Find linear factors and graph x-intercepts.
 - Determine the degree of a polynomial.
 - Use appropriate tools strategically. |

| ALGEBRA \|| | | | |
| :---: | :---: | :---: | :---: |
| Functions | | | |
| Interpreting Functions (F-IF) | | | |
| Analyze functions using different representations ${ }^{\text {a }}$ Supporting | | | |
| F-IF. 8
 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function.
 b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y=$ $(1.02)^{t}, y=(0.97)^{t}, y=$ $(1.01)^{12 t}, y=(1.2)^{t / 10}$, and classify them as representing exponential growth and decay. | Desired Student Performance | | |
| | A student should know
 - The effects of a, k, and h to functions.
 - Properties of exponents. | A student should understand
 - Graphing a function in the form $y=a b^{x}$.
 - The effects of the factor a in $y=a b^{x}$ to stretch, compress, or reflect the parent graph. | A student should be able to do
 - Identify the function $y=a b^{x}$, where $a>0$ and $b>1$ as exponential growth.
 - Identify the function $y=a b^{x}$, where $a>0$ and $b<1$ as exponential decay.
 - Look for and make use of structure. |

ALGEBRA II			
Functions			
Interpreting Functions (F-IF)			
Analyze functions using different representations Supporting			
F-IF. 9	Desired Student Performance		
two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.	A student should know - A function can be used to model the relationship between two quantities. - The end behavior of a graph. - Relative maximum. - Relative minimum.	A student should understand - Calculating slope. - Reading a function's graph or table. - Write functions algebraically various ways (point slope form, standard form).	A student should be able to do - Identify key features of a function. - Create a viable argument comparing two functions.

| ALGEBRA \|| | | | |
| :---: | :---: | :---: | :---: |
| Functions | | | |
| Building Functions (F-BF) | | | |
| Build a function that models a relationship between two quantities Major | | | |
| F-BF. 1
 Write a function that describes a relationship between two quantities.*
 a. Determine an explicit expression, a recursive process, or steps for calculation from a context.
 b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model. | Desired Student Performance | | |
| | A student should know
 - A function can be used to model the relationship between two quantities.
 - The effects of a, k, and h to functions.
 - Direct variation.
 - Constant of variation.
 - Exponential decay.
 - Exponential growth. | A student should understand
 - Finding slope.
 - Writing functions algebraically in various forms. | A student should be able to do
 - Identify key features of a function.
 - Write functions algebraically various ways (point slope form, standard form).
 - Use a real world context to create a function.
 - Relate each term of the function to the next term. |

ALGEBRA II
 Functions
 Building Functions (F-BF)

Build a function that models a relationship between two quantities
Major

F-BF. 2

Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.*

Desired Student Performance

A student should understand

- Writing functions algebraically various ways.

A student should be able to do

- Create arithmetic and geometric sequences from real world contexts.
- Reason abstractly and quantitatively, and relate the forms to one another.
- Relate each term of the function to the next term.

ALGEBRA II			
Functions			
Building Functions (F-BF)			
Build new functions from existing functions Additional			
$\text { F-BF. } 3$	Desired Student Performance		
graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x$ $+k$) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.	A student should know - The effects of a, k, and h to functions.	A student should understand - Interpreting the graph of a function. - Determining if a function is even or odd based on its graph or algebraic form.	A student should be able to do - Use appropriate tools strategically to manipulate and explain graphs of functions.

EDUCATION Impacation

ALGEBRA II			
Functions			
Building Functions (F-BF)			
Build new functions from existing functions			Additional
F-BF. 4 Find inverse functions. a. Solve an equation of the form $f(x)=c$ for a simple function f that has an inverse and write an expression for the inverse. For example, $f(x)=2 x^{3}$ or $f(x)=(x+1) /(x-1)$ for $x \neq 1$.	Desired Student Performance		
	A student should know - Define inverse. - The range of the relation is the domain of the inverse. - The domain of the relation is the range of the inverse.	A student should understand - Creating and solving equations. - If a function maps a to b, then its inverse maps b to a.	A student should be able to do - Define and identify inverse relations and functions. - Create an inverse function.

ALGEBRA II			
Functions			
Linear, Quadratic, and Exponential Models (F-LE)			
Construct and compare linear, quadratic, and exponential models and solve problems			
F-LE. 2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table).*	Desired Student Performance		
	A student should know - Creating a function given data or a contextual description. - Arithmetic and geometric sequences. - Linear functions. - Exponential functions.	A student should understand - Interpreting a function's graph or table. - Creating equations. - The effects of an exponent and its graphical representation.	A student should be able to do - Create linear and exponential functions based on a real world context.

ALGEBRA II			
Functions			
Linear, Quadratic, and Exponential Models (F-LE)			
Construct and compare linear, quadratic, and exponential models and solve problems			
F-LE. 4 For exponential models, express as a logarithm the solution to $a b^{c t}=d$ where a, c, and d are numbers and the base b is 2,10 , or e; evaluate the logarithm using technology.*	Desired Student Performance		
	A student should know - Exponential equations. - Logarithmic equations. - Change of Base formula.	A student should understand - An exponential function is one with the general form $y=a b^{x}, a \neq 0$, with $b>0$, and $\mathrm{b} \neq 1$. - The exponential function $y=b^{x}$ and the logarithmic function $y=\log _{b} x$ are inverse functions.	A student should be able to do - Relate an exponential model to its logarithmic form for real world contexts. - Use appropriate tools strategically.

ALGEBRA II			
Functions			
Linear, Quadratic, and Exponential Models (F-LE)			
Interpret expressions for functions in terms of the situation by model			Additional
F-LE. 5 Interpret the parameters in a linear or exponential function in terms of a context.*	Desired Student Performance		
	A student should know - Linear functions - Exponential functions.	A student should understand - Solving and graphing functions. - Linear functions in pointslope form, slope-intercept form, and standard form. - Exponential functions in the form $y=a b^{x}$.	A student should be able to do - Reason abstractly and quantitatively to interpret the meaning of parameters in a real world context.

ALGEBRA II			
Functions			
Trigonometric (F-TF)			
Extend the domain of trigonometric functions using the unit circle			Additional
F-TF. 1 Understand radian measure of an angle as the length of the arc on the unit circle subtended by the angle.	Desired Student Performance		
	A student should know - Radian measure has no associated unit of measure. - Right triangle trigonometry.	A student should understand - Radian measure is the ratio of arc length and the radius of a circle.	A student should be able to do - Create a reference triangle on a unit circle using right triangle trigonometry.

ALGEBRA II			
Functions			
Trigonometric (F-TF)			
Extend the domain of trigonometric functions using the unit circle			Additional
F-TF. 2 Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.	Desired Student Performance		
	A student should know - Unit circles are circles that have a center at the origin of a coordinate plane. - Terminating sides of angles.	A student should understand - Simplicity of unit circles that have a radius of 1 .	A student should be able to do - Find any of the six trigonometric functions for any angle within any quadrant of the unit circle.

| ALGEBRA \|| | | | |
| :---: | :---: | :---: | :---: |
| Functions | | | |
| Trigonometric (F-TF) | | | |
| Model periodic phenomena with trigonometric functions \quad Additional | | | |
| F-TF. 5
 Choose trigonometric functions to model periodic phenomena with specified amplitude, frequency, and midline.* | Desired Student Performance | | |
| | A student should know
 - Sine functions are horizontal transformations of cosine functions.
 - Sine and cosine functions have the same periods.
 - Frequency is a reciprocal of period. | A student should understand
 - Tangent functions are not appropriate to model periodic phenomena because tangent functions are undefined for $\frac{\pi}{2}+k \pi$, where k is an integer.
 - Sine and cosine functions are appropriate to model periodic phenomena.
 - Contexts that would recreate periodic phenomena. | A student should be able to do
 - Model sine or cosine functions with variations in period, frequency, or midline.
 - Describe similarities/differences in models based on period, frequency, or midline. | depatrmetiof

iducation

ALGEBRA II			
Functions			
Trigonometric (F-TF)			
Prove and apply trigonometric identities			Additional
F-TF. 8 Prove the Pythagorean identity $\sin (\Theta)^{2}+\cos (\Theta)^{2}$ $=1$ and use it to find sin $(\Theta), \cos (\Theta)$, or $\tan (\Theta)$, given $\sin (\Theta), \cos (\Theta)$, or $\tan (\Theta)$ and the quadrant of the angle.	Desired Student Performance		
	A student should know - How to solve quadratic functions. - How to find unknown lengths of a right triangle. - How to create a reference triangle within a unit circle.	A student should understand - One proof of the Pythagorean theorem. - Effects that quadrants have on positive/negative values.	A student should be able to do - Find $\sin (\Theta), \cos (\Theta)$, or tan (Θ), given $\sin (\Theta), \cos (\Theta)$, or $\tan (\Theta)$. - Prove the Pythagorean identity.

ALGEBRA II			
Geometry			
Expressing Geometric Properties with Equations (G-GPE)			
Translate between the geometric description and the equation for a conic section			Additional
G-GPE. 2 Derive the equation of a parabola given a focus and directrix.	Desired Student Performance		
	A student should know - Recognize a parabola as conic sections, formed by the intersection of a cone and a plane parallel to a side of the cone. - Distinguish between vertical and horizontal parabolas. - Define and identify the focus of a parabola, directix, and focal length. - Each point on a parabola is equidistance from both the focus and directix.	A student should understand - Applying the vertex equation for a parabola.	A student should be able to do - Use the focus and directix of a parabola to create its equation. - Attend to precision of vocabulary such as focus and directix used with parabolas.

ALGEBRA II			
Statistics and Probability*			
Interpreting Categorical and Quantitative Data (S-ID)			
Summarize, represent, and interpret data on a single count or measurement variable			Additional
S-ID. 4 Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve.*	Desired Student Performance		
	A student should know - Define and give characteristics of mean, variance, standard deviation, and normal distribution. - Define discrete and continuous probability distribution.	A student should understand - How to calculate mean, variance, and standard deviation. - Give examples of discrete and continuous probability distributions in real world contexts.	A student should be able to do - Use appropriate tools strategically. - Apply standard deviation to create a normal distribution that models a real world scenario. - Interpret data given in a graphic display.

ALGEBRA II			
Statistics and Probability*			
Interpreting Categorical and Quantitative Data (S-ID)			
Summarize, represent, and interpret data on two categorical and quantitative variables			
S-ID. 6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.* a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.	Desired Student Performance		
	A student should know - Quantitative variables. - Line of best fit. - Trend line.	A student should understand - Displaying data on a scatter plot. - Recognize types of correlation (weak or strong, negative or positive, or no correlation).	A student should be able to do - Create a scatter plot to display a data set. - Match data with its graphical representation. - Describe the correlation between two variables. - Make inferences about the problem in context based on its function and data.

ALGEBRA II			
Statistics and Probability*			
Making Inferences and Justifying Conclusions (S-IC)			
Understand and evaluate random processes underlying statistical experiments			
S-IC. 1 Understand statistics as a process for making inferences about population parameters based on a random sample from that population.*	Desired Student Performance		
	A student should know - Define a population. - Define a sample. - Define a representative sample. - Define a random sample.	A student should understand - Given a scenario, identify the population and sample. - Determine if a sample is representative of the population.	A student should be able to do - Determine the population given details of the experiment. - Design a collection process to create a representative sample. - Explain the importance and usefulness of representative samples when making inferences about populations. - Apply to a real world context.

| ALGEBRA \|| | | | |
| :---: | :---: | :---: | :---: |
| Statistics and Probability* | | | |
| Making Inferences and Justifying Conclusions (S-IC) | | | |
| Understand and evaluate random processes underlying statistical experiments Supporting | | | |
| S-IC. 2
 Decide if a specified model is consistent with results from a given datagenerating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model?* | Desired Student Performance | | |
| | A student should know
 - The probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring.
 - Recognize that experimental probability and theoretical (expected) probability may yield different results. | A student should understand
 - Using a frequency table or graph to display a population distribution. | A student should be able to do
 - Justify discrepancies in results concerning experimental probability versus theoretical (expected) probability.
 - Discuss how/ when experimental probability approaches the theoretical (expected) probability.
 - Make sense of a real world context to justify discrepancies in experimental and theoretical probability.
 - Use sample data to make, justify and critique inferences and conclusions about the corresponding population. |

ALGEBRA II			
Statistics and Probability*			
Making Inferences and Justifying Conclusions (S-IC)			
Make inferences and justify conclusions from sample surveys, experiments, and observational studies			
S-IC. 3 Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.*	Desired Student Performance		
	A student should know - Define sample survey, experiment and observational study.	A student should understand - Identify if a scenario describes a sample survey, experiment or observational study. - Determine major difference between sample survey, experiment and observational study. - List the strengths and weakness of each.	A student should be able to do - Determine whether a sample survey, experiment or observational study is appropriate for a given circumstance. - Explain when and why each would be appropriate. - Modify scenarios to create appropriate circumstance for sample survey, experiment or observational study.

EDUCATION

ALGEBRA II			
Statistics and Probability*			
Making Inferences and Justifying Conclusions (S-IC)			
Make inferences and justify conclusions from sample surveys, experiments, and observational studies			
S-IC. 4 Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.*	Desired Student Performance		
	A student should know - Sampling types and methods (convenience, selfselected, systematic, and random sampling). - Bias and influence.	A student should understand - Recognize and create proportional relationships. - Finding margin of error. - Calculating confidence interval.	A student should be able to do - Apply data from a sample to its population by relating parts to the whole and creating proportional models - Identify bias. - Calculate and justify margin of error via simulation models of real world contexts.

education

ALGEBRA II			
Statistics and Probability*			
Making Inferences and Justifying Conclusions (S-IC)			
Make inferences and justify conclusions from sample surveys, experiments, and observational studies			
S-IC. 5 Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant.*	Desired Student Performance		
	A student should know - Sampling types and methods (convenience, selfselected, systematic, and random sampling). Z-score.	A student should understand - Calculating Z-score. - Using proportions to compare data.	A student should be able to do - Compare data to its population by relating parts to the whole and creating proportional models. - Recreate the event with various parameters to gather more data. - Create a viable argument to justify if differences in parameters are significant.

iducation elif feure for eney dive

ALGEBRA II
Statistics and Probability* Making Inferences and Justifying Conclusions (S-IC)

Make inferences and justify conclusions from sample surveys, experiments, and observational
Major studies

S-IC. 6	Desired Student Performance		
on data.*	A student should know - Measures of central tendencies and their uses. - Measures of variation. - Interpreting a box-andwhiskers plot.	A student should understand - Calculating measures of central tendency. - Calculating measures of variation.	A student should be able to do - Attend to precision in use of explicit statistical vocabulary. - Decide if specified models are consistent with results from the given datagenerating processes.

ALGEBRA II			
Statistics and Probability*			
Conditional Probability and the Rules of Probability (S-CP)			
Understand independence and conditional probability and use them to interpret data			Additional
S-CP. 1 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").*	Desired Student Performance		
	A student should know - Conditional probability - Contingency, or two-way frequency, tables. - Addition Rule of Probability. - Independent and dependent events.	A student should understand - The formula to find conditional probability-For any two events A and B with $P(A) \neq \mathrm{P}(B \mid A)=$ $\frac{P(\text { AandB })}{P(A)}$	A student should be able to do - Recognize, determine, and use conditional probability in contextual problems. - Apply the Addition Rule of Probability and interprets answers in context.

ALGEBRA II

ALGEBRA II			
Statistics and Probability*			
Conditional Probability and the Rules of Probability (S-CP)			
Understand independence and conditional probability and use them to interpret data			Additional
S-CP. 2 Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.*	Desired Student Performance		
	A student should know - Define and identify examples of dependent and independent events.	A student should understand - Finding the probability of a single event. - The probability of events A and B : $P(A$ and $B)=P(A) \cdot P(B)$.	A student should be able to do - Determine if two real world events are independent of one another. - Give examples of real world independent events and determine the probability of them both happening.

ALGEBRA II			
Statistics and Probability*			
Conditional Probability and the Rules of Probability (S-CP)			
Understand independence and conditional probability and use them to interpret data			Additional
S-CP. 3 Understand the conditional probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.*	Desired Student Performance		
	A student should know - Conditional Probability.	A student should understand - Calculating probability of compound events-The probability of events A and B : $P(A$ and $B)=P(A) \cdot P(B)$.	A student should be able to do - Communicate dependency of one event to another in calculating its probability. - Identify conditional probability in real world contexts.

ALGEBRA II			
Statistics and Probability*			
Conditional Probability and the Rules of Probability (S-CP)			
Understand independence and conditional probability and use them to interpret data			Additional
S-CP. 4 Construct and interpret twoway frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.*	Desired Student Performance		
	A student should know - Conditional probability. - Contingency, or two-way frequency, table. - Addition Rule of Probability. - Independent and dependent events.	A student should understand - Calculating conditional probability-For any two events A and B with $P(A) \neq \mathrm{P}(B \mid A)=$ $\frac{P(\text { AandB })}{P(A)}$	A student should be able to do - Create and interpret contingency tables based on real world contexts. - Create a viable argument as to whether two events are independent or dependent.

ALGEBRA II			
Statistics and Probability*			
Conditional Probability and the Rules of Probability (S-CP)			
Understand independence and conditional probability and use them to interpret data			Additional
S-CP. 5 Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.*	Desired Student Performance		
	A student should know - Conditional probability. - Independent and dependent events.	A student should understand - Calculating conditional probability-For any two events A and B with $P(A) \neq \mathrm{P}(B \mid A)=$ $\frac{P(\text { AandB })}{P(A)}$	A student should be able to do - Determine if conditional probability exist in real world context examples. - Create a viable argument as to whether two events are independent or dependent.

EDUCATON

ALGEBRA II				
Statistics and Probability*				
Conditional Probability and the Rules of Probability (S-CP)				
Use the rules of probability to compute probabilities of compound events in a uniform probability model				Additional
S-CP. 6 Find the conditional probability of A given B as the fraction of B 's outcomes that also belong to A, and interpret the answer in terms of the model.*	Desired Student Performance			
	A student should know - Conditional probability. - Contingency, or two-way frequency, table. - Addition Rule of Probability. - Independent and dependent events.	A student should understand - Calculating conditional probability-For any two events A and B with $P(A) \neq \mathrm{P}(B \mid A)=$ $\frac{P(\text { AandB })}{P(A)}$	A stu	ould be able to do contingency tables real world contexts e conditional ty. and explain the back to the real world f the problem.

ALGEBRA II				
Statistics and Probability*				
Conditional Probability and the Rules of Probability (S-CP)				
Use the rules of probability to compute probabilities of compound events in a uniform probability model				Additional
S-CP. 7 Apply the Addition Rule, $P(A$ or $B)=P(A)+P(B)-$ $P(A$ and $B)$, and interpret the answer in terms of the model.*	Desired Student Performance			
	A student should know - Dependent events. - Independent events. - Mutually exclusive events.	A student should understand - The probability of events A and B : $P(A$ and $B)=P(A) \cdot P(B)$. - The probability of event A or B: $P(A$ or $B)=P(A)+P(B)-$ $P(A$ and $B)$. - The probability of event A or B if the two are mutually exclusive events: $P(A$ or $B)=P(A)+P(B)$.		ould be able to do dependent, dent, and mutually events in a real ntext. events and apply the Rule in real world

