High School—Geometry The fundamental purpose of the course in Geometry a one-credit course, is to formalize and extend students' geometric experiences from the middle grades. Students explore more complex geometric situations and deepen their explanations of geometric relationships, moving towards formal mathematical arguments. Important differences exist between this Geometry course and the historical approach taken in Geometry classes. Close attention should be paid to the introductory content for the Geometry conceptual category found in the high school MS CCRS CCSS. The Mathematical Practice Standards apply throughout each course and, together with the content standards, prescribe that students experience mathematics as a coherent, useful, and logical subject that makes use of their ability to make sense of problem situations. The six critical areas of this course include (1) building a thorough understanding of translations, reflections, and rotations; (2) developing the understanding of similarity and several theorems; (3) extension of formulas for 2dimensional and 3-dimensional objects (4) extension of 8th grade geometric concepts of lines; (5) prove basic theorems about circles; and (6) work with experimental and theoretical probability. Each critical area is described below: - (1) In previous grades, students were asked to draw triangles based on given measurements. They also have prior experience with rigid motions: translations, reflections, and rotations and have used these to develop notions about what it means for two objects to be congruent. In this unit, students establish triangle congruence criteria, based on analyses of rigid motions and formal constructions. They use triangle congruence as a familiar foundation for the development of formal proof. Students prove theorems—using a variety of formats—and solve problems about triangles, quadrilaterals, and other polygons. They apply reasoning to complete geometric constructions and explain why they work. - (2) Students apply their earlier experience with dilations and proportional reasoning to build a formal understanding of similarity. They identify criteria for similarity of triangles, use similarity to solve problems, and apply similarity in right triangles to understand right triangle trigonometry, with particular attention to special right triangles and the Pythagorean Theorem. Students develop the Laws of Sines and Cosines in order to find missing measures of general (not necessarily right) triangles, building on students' work with quadratic equations done in the first course. They are able to distinguish whether three given measures (angles or sides) define 0, 1, 2, or infinitely many triangles. - (3) Students' experience with two-dimensional and three-dimensional objects is extended to include informal explanations of circumference, area and volume formulas. Additionally, students apply their knowledge of two-dimensional shapes to consider the shapes of cross-sections and the result of rotating a two-dimensional object about a line. ## High School—Geometry (continued) - (4) Building on their work with the Pythagorean theorem in 8th grade to find distances, students use a rectangular coordinate system to verify geometric relationships, including properties of special triangles and quadrilaterals and slopes of parallel and perpendicular lines, which relates back to work done in the first course. Students continue their study of quadratics by connecting the geometric and algebraic definitions of the parabola. - (5) Students prove basic theorems about circles, such as a tangent line is perpendicular to a radius, inscribed angle theorem, and theorems about chords, secants, and tangents dealing with segment lengths and angle measures. They study relationships among segments on chords, secants, and tangents as an application of similarity. In the Cartesian coordinate system, students use the distance formula to write the equation of a circle when given the radius and the coordinates of its center. Given an equation of a circle, they draw the graph in the coordinate plane, and apply techniques for solving quadratic equations, which relates back to work done in the first course, to determine intersections between lines and circles or parabolas and between two circles. - (6) Building on probability concepts that began in the middle grades, students use the languages of set theory to expand their ability to compute and interpret theoretical and experimental probabilities for compound events, attending to mutually exclusive events, independent events, and conditional probability. Students should make use of geometric probability models wherever possible. They use probability to make informed decisions. The content of this document is centered on the mathematics domains of Counting and Cardinality (Grade K), Operations and Algebraic Thinking; Numbers and Operations in Base Ten (Grades K-5); Numbers and Operations—Fractions (Grades 3-5); Measurement and Data (Grades K-5); Ratios and Proportional Relationships (Grades 6-7); the Number System, Expressions & Equations, Geometry, Statistics & Probability (Grades 6-8); Functions (Grade 8), and the high school conceptual categories of Number and Quantity, Algebra, Functions, Modeling, Geometry, and Statistics & Probability. Instruction in these domains and conceptual categories should be designed to expose students to experiences, which reflect the value of mathematics, to enhance students' confidence in their ability to do mathematics, and to help students communicate and reason mathematically. | Geometry | | | | |---|--|--|--| | Congruence (G-CO) | | | | | | | | | | | Experiment with transformations in the plane | | | | G-CO.1 | Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc. | | | | G-CO.2 | Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch). | | | | G-CO.3 | Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself. | | | | G-CO.4 | Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments. | | | | G-CO.5 | Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another. | | | | Understand congruence in terms of rigid motions | | | | | G-CO.6 | Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent. | | | | G-CO.7 | Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent. | | | | G-CO.8 | Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions. | | | | Prove geometric theorems | | | | | G-CO.9 | Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints. | | | | G-CO.10 | Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point. | | | | G-CO.11 | Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals. | | | | Geometry | | | | |--|---|--|--| | Make geometric constructions | | | | | G-CO.12 | Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line. | | | | G-CO.13 | Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle. | | | | | Similarity, Right Triangles, and Trigonometry (G-SRT) | | | | Understand similarity in terms of similarity transformations | | | | | G-SRT.1 | Verify experimentally the properties of dilations given by a center and a scale factor: a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged. b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor. | | | | G-SRT.2 | Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides. | | | | G-SRT.3 | Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar. | | | | Prove theorems involving similarity | | | | | G-SRT.4 | Prove theorems about triangles. Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity. | | | | G-SRT.5 | Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures. | | | | Define trigonometric ratios and solve problems involving right triangles | | | | | G-SRT.6 | Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles. | | | | G-SRT.7 | Explain and use the relationship between the sine and cosine of complementary angles. | | | | G-SRT.8 | Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.* | | | | Circles (G-C) | | | | | Understand and apply theorems about circles | | | | | G-C.1 | Prove that all circles are similar. | | | | | Geometry | | | |---|--|--|--| | G-C.2 | Identify and describe relationships among inscribed angles, radii, and chords. <i>Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.</i> | | | | G-C.3 | Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle. | | | | | Find arc lengths and areas of sectors of circles | | | | G-C.5 | Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector. | | | | | Expressing Geometric Properties with Equations (G-GPE) | | | | т | ranslate between the geometric description and the equation for a conic section | | | | G-GPE.1 | Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. | | | | | Use coordinates to prove simple geometric theorems algebraically | | | | G-GPE.4 | Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{3})$ lies on the circle centered at the origin and containing the point $(0, 2)$. | | | | G-GPE.5 | Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point). | | | | G-GPE.6 | Find the point on a directed line segment between two given points that partitions the segment in a given ratio. | | | | G-GPE.7 | Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.* | | | | | Geometric Measurement and Dimension (G-GMD) | | | | Explain volume formulas and use them to solve problems | | | | | G-GMD.1 | Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments. | | | | G-GMD.3 | Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.* | | | | Visualize relationships between two-dimensional and three-dimensional objects | | | | | G-GMD.4 | Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects. | | | | Modeling with Geometry (G-MG) | | | |---|---|--| | Apply geometric concepts in modeling situations | | | | G-MG.1 | Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).* | | | G-MG.2 | Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).* | | | G-MG.3 | Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).* | | ^{*} Modeling Standards #### **Additional Resource** ### 2016 Mississippi College- and Career-Standards Scaffolding Document The primary purpose of the 2016 Mississippi College- and Career-Readiness Standards Scaffolding Document is to provide teachers with a deeper understanding of the Standards as they plan for classroom instruction. Based on the 2016 Mississippi College- and Career-Readiness Standards for Mathematics, this document provides a close analysis of the requirements for student mastery. Because of the rigor and depth of the Standards, scaffolding instruction to meet the needs of all learners is essential to individual success. The Scaffolding Document will aid teachers' understanding of how to teach the Standards through a natural progression of student mastery. The Scaffolding Document can be found at http://www.mde.k12.ms.us/ESE/ccr. #### **Standards for Mathematical Practice** - Make sense of problems and persevere in solving them - 2. Reason abstractly and quantitatively. - 3. Construct viable arguments and critique the reasoning of others. - 4. Model with mathematics. - 5. Use appropriate tools strategically. - 6. Attend to precision. - 7. Look for and make use of structure. - 8. Look for and express regularity in repeated reasoning.