Hattiesburg Public School District Algebra I Mathematics Units 2015-2016

Unit 4: Linear Functions
Content Standards
Major Standards
A-REI.D.10 : Understand that the graph of an equation in two variables is the set of all
its solutions plotted in the coordinate plane, often forming a curve (which could be a
line).
A-REI.D.11: Explain why the x -coordinates of the points where the graphs of the
equations $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and $\mathrm{y}=\mathrm{g}(\mathrm{x})$ intersect are the solutions of the equation $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$;
find the solutions approximately, e.g., using technology to graph the functions, make
tables of values, or find successive approximations. Include cases where $\mathrm{f}(\mathrm{x})$ and/or
$\mathrm{g}(\mathrm{x})$ are linear, polynomial, rational, absolute value, exponential, and logarithmic
functions.*
A-CED.A.2: Create equations in two or more variables to represent relationships
between quantities; graph equations on coordinate axes with labels and scales.*
F-IF.B.4 For a function that models a relationship between two quantities, interpret
key features of graphs and tables in terms of the quantities, and sketch graphs
showing key features given a verbal description of the relationship. Key features
include: intercepts; intervals where the function is increasing, decreasing, positive, or
negative; relative maximums and minimums; symmetries; end behavior; and
periodicity

Time Frame: 2 Weeks (Sept 16 - Oct 2)

Standards for Mathematical Practice

(1) Make sense of problems and persevere in solving them.
(2) Reason abstractly and quantitatively.***
(3) Construct viable arguments and critique the reasoning of others.
(4) Model with mathematics. ***
(5) Use appropriate tools strategically. ***
(6) Attend to precision.
(7) Look for and make use of structure.
(8) Look for and express regularity in repeated reasoning. *
**NOTE: MPs taken from the FlipBook by McGraw Hill.

Hattiesburg Public School District Algebra I Mathematics Units 2015-2016

F-IF.B. 5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.
F-IF.B. 6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.
S-ID.C.7: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.*
S-ID.C.8: Compute (using technology) and interpret the correlation coefficient of a linear fit.*
S-ID.C. 9: Distinguish between correlation and causation.*

Supporting Standards

F-IF.C.7: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

- a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
F-IF.C.9: Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

Hattiesburg Public School District Algebra I Mathematics Units 2015-2016

F-LE.A.1: Distinguish between situations that can be modeled with linear functions and with exponential functions.
a. Prove that linear functions grow by equal differences over equal intervals and that exponential functions grow by equal factors over equal intervals.
b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
F-LE.B.5: Interpret the parameters in a linear or exponential function in terms of a context.*
S-ID.B.6: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.
a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.
b. Informally assess the fit of a function by plotting and analyzing residuals.
c. Fit a linear function for a scatter plot that suggests a linear association.

Additional Standards

F-BF.B. 3 Identify the effect on the graph of replacing $f(x)$ by $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

Hattiesburg Public School District
Algebra I Mathematics Units
2015-2016

Pre-requisite Standards				
Lesson 1	Lesson 2	Lesson 3	Lesson 4	
Lesson 6	Lesson 7	Lesson 8		Lesson 9

